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Abstract 

Electrocardiography is well established as an effective 
clinical tool for detection and diagnosis of cardiac 
arrhythmias and abnormalities. The objective of the 2021 
PhysioNet/Computing in Cardiology Challenge was for 
teams to develop automated classification algorithms for 
reduced-lead ECGs. While it is well-known that proper 
pre-processing is very important for the success of 
classification algorithms, there is not universal 
agreement as to the appropriate pre-processing steps for 
automated ECG classification. Papers from the top 15 
finishers in the Challenge as well as the bottom ten 
finishers were examined to determine what pre-
processing steps were applied by each team.  

The most commonly used pre-processing steps 
included resampling to a consistent sampling rate, 
applying a bandpass filter, normalizing and using a fixed 
signal length. There were a number of similarities in the 
preprocessing steps used by the top 15 teams, whereas all 
of these steps were not applied in the majority of 
approaches for the bottom ten teams. In the bottom ten 
participants, less than half used a bandpass filter, and 
only three applied some type of normalization. This 
investigation underscores the importance of appropriate 
pre-processing for strong classification accuracy and the 
need for a universal approach to pre-processing 
techniques in automated ECG classification. 

 
 

1. Introduction 

Electrocardiography is well-established as an effective 
clinical tool for detection and diagnosis of cardiac 
arrhythmias and abnormalities [1]. Due to the equipment 
cost and required staff expertise, however, not all medical 
facilities worldwide are capable of regularly providing 
patients with standard 12-lead electrocardiograms 
(ECGs). It is currently unclear if fewer leads could 
potentially provide comparable classification accuracy as 
the standard 12-lead ECG. As a result, the objective of 
the 2021 PhysioNet/Computing in Cardiology Challenge 
was for teams to develop automated classification 
algorithms for reduced-lead ECGs on a large dataset 

acquired from several geographically separated sites 
[2,3].  

Over 200 teams attempted the Challenge, utilizing 
various algorithms for classification, including neural 
networks [4], wavelet transforms [5] and LSTM networks 
[6]. Transfer learning was also used by some teams [7,8]. 
Prior to the Challenge, various degrees of success have 
been achieved in the reconstruction accuracy of 12-lead 
ECGs from reduced lead sets [9]. While some studies 
have shown that patient-specific lead derivation provided 
better accuracy than generalized derivations [10] (except 
in the presence of ischemic events [11]), Independent 
Component Analysis (ICA) has been shown to accurately 
reconstruct precordial leads [12]. Additional studies have 
not reproduced comparable accuracy, however, in the 
presence of rhythm and morphological abnormalities 
[13]. Various prior studies, which have been limited in 
terms of dataset availability and reproducibility, have 
motivated the 2021 Challenge in order to rigorously 
determine the potential classification accuracy achievable 
for various reduced lead set combinations.  

In addition to the many papers resulting from the 
Challenge itself, substantial focus in the recent literature 
has been placed on the accuracy and potential clinical 
utility of different machine learning models for automated 
ECG classification. However, while it is well-known that 
proper pre-processing is very important for the success of 
classification algorithms, there is not universal agreement 
as to the appropriate pre-processing steps for automated 
ECG classification. The structure of the Challenge 
provides the opportunity to better investigate and 
compare the various options for pre-processing for 
different algorithms applied to the same large-scale 
training dataset. 

 
2. Methods 

We reviewed the Computing in Cardiology Conference 
papers from the top fifteen finishers in the Challenge to 
determine what pre-processing steps were applied by each 
team. We first looked at resampling, which allows signals 
to be compared at the same rate. We next examined 
normalization techniques, which are useful in order to 
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compare signals on the same scale in terms of magnitude. 
Filtering/noise reduction was also observed, which is 
typically done to reduce noise while maintaining 
physiologically meaningful frequencies in the signals. 
Next, we looked at fixed signal lengths, which are 
necessary for certain machine learning algorithms. 
Finally, Challenge data that are not used for training or 
external datasets which are added to the training data are 
examined. Datasets which have atypical characteristics 
(very long signals, low sampling rate, etc.) or with 
ambiguous classification labels may be discarded, 
whereas additional data may be added to supplement and 
diversify the training set.  

In order to assess the generalizability of the 
algorithms, we examined the standard deviation of the 
scores on the different test sets: China Physiological 
Signal Challenge (CPSC), Georgia (G12EC), Undisclosed 
and the University of Michigan (UMich). Challenge 
participants were given training data from two of the 
datasets, CPSC and G12EC, but these data were non-
overlapping with the test and validation data. However, 
the other two datasets, Undisclosed and UMich, only 
appeared in the test set, so participants were unable to 
train with records from either of these sites. As a result, 
the generalizability can be ascertained from the standard 
deviation by observing the consistency of the participant 
submissions across these different test sets, which may be 
more meaningful in terms of practical clinical utility of 
these algorithms rather than overall performance.  

 
3. Results 

There were a number of similarities in the pre-
processing steps used by the top 15 teams. All challengers 
in this group used a consistent sampling rate across all 
input data. Seven teams used 500Hz, 3 teams used 
250Hz, and the remaining teams used 300Hz, 257Hz, 
200/100Hz, 150Hz, and 125Hz, respectively. Over half 
used some type of normalization or standardization of the 
signals,  including min-max and z-score normalization. 
Seven challengers applied bandpass filters, with varying 
passband ranges. All but two of the fifteen entries used a 
fixed signal length, though the actual length varied, with 
the smallest being 2000 samples and the largest being 
15000 samples. Five teams removed the PTB and 
INCART datasets from the training set. Two teams 
removed signals based on length; one team removed 
signals longer than 15 seconds, and another team 
removed signals longer than 20 seconds. 

Interestingly, the vast majority of the top fifteen 
participants used neural networks with residuals, whereas 
only one of the bottom ten participant teams used a 
version of this algorithm. In addition, in the bottom ten 
participants, less than half used a bandpass filter, and only 

three applied some type of normalization. Six of the 
participants in the bottom ten group used a fixed sampling 
rate, and all but one of the teams used a fixed signal 
length, which was typically achieved by cropping or zero-
padding the signals. 

The official ranking order did not fully correlate with 
the relative performance between submissions on the 
hidden test subsets, as shown in Figure 1 and Table 1. 
Some participants did worse against the blind set relative 
to other algorithms which ranked lower. For instance, one 
of the 5th place teams scored 0.89 on CPSC but received a 
score of 0.31 on the undisclosed set. On the other hand, 
the other team that tied for 5th place scored 0.59 on CPSC 
and received a score of 0.42 on the undisclosed set.  
 

 
Figure 1. Official scores for individual test sets per team. 
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Table 1. Standard deviation across the four test sets. 
Team Name  Ranking Standard Deviation 
ISIBrno-AIMT 1 0.0714 
DSAIL_SNU 2 0.0299 
NIMA 3 0.1310 
cardiochallenger 4 0.1179 
USST_Med 5 0.0746 
CeZIS 5 0.2410 
SMS+1 7 0.0988 
DataLA_NUS 7 0.1192 
Dr_Cubic 9 0.2278 
ami_kagoshima 10 0.1628 
prna 11 0.0991 
snu_adsl 11 0.1895 
iadi-ecg 11 0.1428 
Polimi_1 11 0.1548 
BUTTeam 15 0.1282 
 

4. Discussion and Conclusions 

While these results predictably reinforce the well-
known need to properly pre-process data for machine 
learning algorithms, they also highlight the importance of 
a generally agreed upon standard for critical pre-
processing steps. A standard set of steps would be 
particularly beneficial to advance this important area of 
research, and it is clear that such an agreement has not yet 
been reached due to the significant variability in pre-
processing approaches among the Challenge submissions, 
which have resulted in varying degrees of classification 
accuracy among Challenge participants.  

From observing the pre-processing steps taken in the 
top fifteen finishers compared with the bottom ten 
finishers, some obvious patterns emerge. In particular, it 
appears that the combination of residual neural networks 
with a fixed sampling rate and fixed signal length is very 
effective at achieving high classification accuracy. 
However, there is an interesting case [28] in the bottom 
ten in which ResNet, a fixed sampling rate and a fixed 
signal length are used, but the classification accuracy is 
significantly worse than other participants with similar 
approaches. We speculate that although a fixed sampling 
rate was used, the sampling rate chosen is relatively low, 
64Hz, which may have contributed to the reduction in 
classification accuracy. In particular, that sampling rate is 
too low to fully capture the generally accepted frequency 
range of a standard electrocardiogram, i.e. 0.05-150Hz, 
which implies that the sampling rate used by this team 
may have omitted relevant signal components at higher 
frequencies. 

Based on the standard deviation of algorithmic 
performance on the test sets, it is clear that the official 
Challenge rankings are not necessarily indicative of the 

generalizability of the individual approaches. For 
example, for team CeZIS, which was tied for fifth place 
in the official rankings, the model was likely overtrained 
on the known datasets (CPSC and G12C), achieving the 
highest score of any algorithm in the top 15 on the CPSC 
dataset. Even though the overall Challenge score and 
ranking were among the top performers overall for this 
team, this algorithm performed much worse on previously 
unseen datasets than other comparably ranked algorithms, 
resulting in a relatively high standard deviation across all 
four test sets. Therefore, the reduced classification 
accuracy on the previously unseen data speaks to the lack 
of robust generalizability of the algorithm. In comparison, 
the other team tied for fifth place, USST_Med, had a 
much smaller overall standard deviation across the four 
datasets, so even though their ranking was the same as 
CeZIS, this analysis implies that the USST_Med 
algorithm is much more likely to accurately classify 
previously unseen data since it does not appear to be 
overtrained on the provided training sets. 

On the other hand, the second place team in the 
Challenge, DSAIL_SNU, had the lowest overall standard 
deviation. It also tied for the highest score on the 
undisclosed set, with a value of 0.54. However, it did not 
have the highest classification accuracy for any other 
individual dataset, even with its very high overall score. 
These factors indicate that this algorithm is generalizable 
and highly likely to accurately classify previously unseen 
datasets.  

There are a number of limitations of this analysis, most 
notably the significant variations in overall approach 
between the participants, which make it impossible to 
fully isolate the effects of the individual pre-processing 
steps on classification accuracy. 
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